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Abstract. The solution of the Hartree–Fock–Bogoliubov problem with restoration of the broken symmetries
before the variation has been generalized for the use of totally unrestricted quasi–particle determinants.
With this method doubly–even, doubly–odd and odd nuclei can be treated on the same footing. Comparison
with the results of complete shell–model diagonalizations shows that already one–determinant represen-
tations yield a very good approximation to the exact solutions even in the middle of the 1s0d shell. The
problem is especially suited for numerical implementation on parallel computers. First tests show a linear
dependence of the inverse CPU time with the number of processors used.

PACS. 21.10.-k Properties of nuclei, nuclear energy levels – 21.60.Jz Hartree-Fock and random-phase
approximation

1 Introduction

Many nuclear structure problems require the use of sin-
gle particle basis–systems, which are far too large to allow
for a complete diagonalization of a suitably chosen effec-
tive many–nucleon Hamiltonian, as it is done in the Shell–
model Configuration-Mixing (SCM) approach [1]. Obvious
examples are the spectra of medium–heavy and heavy de-
formed nuclei, but even such comparatively simple tasks
as the description of negative–parity states in light even A
nuclei. For such problems one has therefore to truncate the
complete SCM expansion of the nuclear wave functions
to a numerically feasible number of A–nucleon configu-
rations without loosing the essential degrees of freedom
relevant for the particular states under consideration. A
simple truncation of the SCM space according to the un-
perturbed energies of the configurations is rather question-
able. This prescription [2] yields often unsatisfying conver-
gence properties especially for those states in the nuclear
spectrum, which are of a more collective nature. We did
follow therefore in the last years another avenue, which
starts from the ideas of mean–field theory and tries to ex-
tract the relevant degrees of freedom directly from the nu-
clear Hamiltonian via variational procedures. In this way
the selection of the configurations is left entirely to the
dynamics of the system considered, and the ambiguities
of the traditional truncation schemes are avoided.

Out of the various possibilities to explore this av-
enue [3-5], the VAMPIR (Variation After Mean–field
Projection In Realistic model spaces) approach [6,7], its
extension for the description of excited states, the EX-
CITED VAMPIR [5,8], and finally the inclusion of ad-

ditional correlations via the EXCITED FED VAMPIR
method [9] are the most elaborate ones. In the VAM-
PIR approach the energetically lowest (“yrast”) state
with a given symmetry (i.e. fixed number of protons
and neutrons, definite parity and angular momentum) is
approximated by a single symmetry–projected Hartree–
Fock–Bogoliubov (HFB) vacuum. The underlying mean–
field is determined by a variational calculation after the
projection. This yields the optimal description of each
yrast–state in a symmetry–projected independent quasi–
particle picture. The EXCITED VAMPIR approach is
the straightforward extension of this method for the ex-
cited states with the same symmetry. Here for the first
excited state of the considered system simply a second
symmetry–projected HFB vacuum being Gram–Schmidt–
orthogonalized to the yrast–solution is taken as test wave
function. The variation yields then the optimal descrip-
tion of the first excited state again by a single projected
determinant. In the same way afterwards the higher ex-
cited states are constructed. Finally the residual interac-
tion is diagonalized in between all these solutions. This
procedure has the advantage that one can describe excited
states with a structure completely different from that of
the corresponding yrast–state.

The EXCITED FED VAMPIR approach uses several
instead of only one symmetry–projected HFB vacua for
the description of each state. It determines each of the
different underlying HFB transformations successively to-
gether with the configuration mixing via a chain of vari-
ational calculations. In this way it is ensured that each
further symmetry–projected determinant does not disturb
the wave function more than the last one added previously.
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In addition the confidence level of the calculation can be
improved considerably. These methods have been applied
[10] with good success for example to the rather complex
shape–coexistence phenomena in the A ∼ 70 mass–region.
However, even in the most recent versions of these meth-
ods we still had imposed time–reversal invariance and ax-
ial symmetry on the underlying HFB transformations (see
[5] and references therein).

These last restrictions will be removed in the present
paper. For the first time we shall report results of
symmetry–projected HFB calculations on the basis of
completely unrestricted quasi–particle determinants. For
simplicity we shall restrict ourselves to the one determi-
nant VAMPIR approach. However, the mathematical for-
malism as well as its numerical implementation for the
more elaborate versions mentioned above are ready for
application, too.

In the next section we shall introduce the basic ingre-
dients of the theory. They have been discussed in detail
elsewhere [7,8,9] and will hence be sketched only briefly.
Section 3 will list the advantages of the new approach with
respect to its older, more restricted, versions. Section 4 dis-
plays details of the numerical implementation and demon-
strates its excellent performance on data–parallel comput-
ers. In Sect. 5 we present the results of selected applica-
tions in 1s0d–shell nuclei and compare them to the results
of exact SCM calculations. Furthermore we discuss the im-
provements with respect to symmetry–restricted versions
of the VAMPIR approach. Conclusions will be drawn and
an outlook on improvements necessary for applications in
larger model spaces will be given in Sect. 6.

2 Outline of the theory

Be {|i >, |k >, ...}Mb
a finite Mb –dimensional set of

orthonormal spherical single nucleon states. The corre-
sponding creation and annihilation operators will be de-
noted by {c†i , c

†
k, ...}Mb

and {ci, ck, ...}Mb
, respectively.

They fulfill the usual anticommutation–relations for
Fermion field operators. The particle vacuum |0 > is de-
fined by ci|0 >≡ 0 for all i = 1, ...,Mb.

We now introduce quasi–particle creators and annihi-
lators via

a†α ≡
Mb∑
i=1

(Aiαc
†
i +Biαci) (1)

and hence

aα =
Mb∑
i=1

(B∗iαc
†
i +A∗iαci) (2)

respectively. Eqs. (1) and (2) can be combined to a single
matrix–equation(

a†

a

)
=
(
AT BT

B† A†

)(
c†

c

)
≡ F

(
c†

c

)
(3)

with F being a (2Mb ∗ 2Mb)–dimensional matrix. In or-
der to ensure anti–commutation relations for the quasi–

particle operators (1) and (2) this matrix has to be uni-
tary

FF † = F †F = 12Mb
(4)

Eqs. (3) and (4) define the famous HFB transformation
[11]. It is the most general linear transformation conserv-
ing the anti–commutation relations, which can be con-
structed within the chosen finite single particle basis. The
vacuum |F > for the quasi–particle annihilators (2) is de-
fined by

aα|F > ≡ 0 for all α = 1, ...,Mb (5)

and may be represented as

|F >=
(M ′b∏
α=1

aα

)
|0 > with M ′b≤Mb (6)

where the product runs over all α with aα|0 > being dif-
ferent from zero.

Since the transformation (3) sums over all the quan-
tum numbers characterizing the single particle basis states
(isospin–projection, orbital angular momentum, total an-
gular momentum, the 3–projection of the latter, and the
radial excitation), |F > is neither an eigenstate of the
square of the total angular momentum operator Î2 nor
of its 3–component Îz. Furthermore particle number and
charge conservation are violated and, in general, the vac-
uum (6) has no definite parity either. The only symmetry
still conserved is the so–called “number–parity” [12], i.e.
|F > contains either only components with even or with
odd total nucleon numbers A.

From the vacuum (6) one can construct configurations
with the desired symmetry quantum numbers s ≡ ATzIπ
using the operator [5]

Θ̂sMK ≡ P̂ (IM ;K)Q̂(2Tz)Q̂(A)p̂(π) (7)

Here
p̂(π) ≡ 1

2
(1 + πΠ̂) (8)

with Π̂ being the parity operator, projects onto definite
parity π.

Q̂(A) ≡ 1
2π

∫ 2π

0

dϕexp{iϕ(A− Â)} (9)

with Â being the nucleon number operator, restores the
desired total nucleon number A [13], and

Q̂(2Tz) ≡
1

2π

∫ 2π

0

dχexp{iχ(N − Z − N̂ + Ẑ)} (10)

with N̂ and Ẑ being the neutron and proton number oper-
ators, respectively, selects the components with a definite
total isospin-projection 2Tz = N − Z.

Finally

P̂ (IM ;K) ≡ 2I + 1
8π2

∫ (4π)

dΩDI∗

MK(Ω)R̂(Ω) (11)
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with R̂(Ω) being the usual rotation operator [14] and
DI
MK(Ω) denoting its representation in angular momen-

tum eigenstates constructs from the I3 = K component
in the symmetry–breaking “intrinsic” frame of reference a
configuration in the laboratory frame with total angular
momentum I and 3–component Iz = M [15].

Via the K–quantum number the configuration ob-
tained by acting with the operator (7) on the HFB vac-
uum (6) does still depend on the orientation of the in-
trinsic quantisation axis. This unphysical dependence is
eliminated by taking the linear combinations

|φρ; sM >≡
+I∑

K=−I
Θ̂sMK |F > fK;ρ (12)

as physical configurations. Even if only a single determi-
nant is considered, the restoration of the rotational sym-
metry thus introduces additional configuration–mixing co-
efficients f , which together with the intrinsic degrees of
freedom of the underlying HFB transformation will have
to be determined by variation.

In the following we shall restrict ourselves to test wave
functions of the form (12). However, the extension to lin-
ear combinations of several configurations of this type is
straightforward [9] and the code we have constructed can
handle also this general option. Details of the procedure
to determine the underlying mean fields and the config-
uration mixing by chains of variational calculations are
discussed in the [5, 9].

3 Unrestricted versus symmetry restricted
methods

In a given basis the unrestricted, complex transformation
F mixes all m–states with m=-jmax to +jmax regardless of
parity and proton or neutron origin. Thus after projection
of parity, nucleon numbers, and finally the 3–dimensional
projection of the total spin any type of state can be de-
scribed in doubly–even, doubly–odd and odd nuclei al-
ready via a single determinant. This is not the case in the
older versions of the approach where certain symmetries
were imposed on the underlying HFB transformations.

The requirement of axially symmetric HFB transfor-
mations induces that the vacua are eigenstates to the 3–
component of the total angular momentum operator Îz
with eigenvalues K = 0. The assumption of time–reversal
invariance introduces in addition a two–fold degeneracy
into the system. Consequently, the resulting test wave
functions are restricted to even nucleon number and can
only describe states of doubly–even or doubly–odd nuclei.
Furthermore, not even all states in these nuclei are acces-
sible. Though by the use of essentially complex transfor-
mations all possible two–nucleon couplings are included,
particular four– and more–nucleon couplings are missing
[5,7,8] : two natural (or unnatural) parity pairs cannot be
coupled to an unnatural parity four nucleon wave function
and one natural and one unnatural parity pair not to a
natural parity four nucleon state. Hence, e.g., out of all the

(0d5/2)4 shell–model configurations just one Iπ = 3+ and
one Iπ = 5+ state (both with total isospin T=0) are miss-
ing. Similarly, from all the (0d5/2)6 configurations one 4+

and one 6+ state cannot be accounted for. Consequently,
excitations which are dominated by configurations con-
taining such “missing couplings” as irreducible substruc-
tures cannot be described even within the up to now most
advanced COMPLEX VAMPIR approach.

In the earlier calculations we had imposed even more
severe symmetry restrictions on the HFB transforma-
tions : proton–neutron– and parity–mixing were forbidden
and only real mean–fields were admitted. Consequently,
only natural parity states in doubly–even nuclei were ac-
cessible by the various so called REAL VAMPIR ap-
proaches.

It should be stressed, however, that these deficien-
cies can be overcome even on the basis of symmetry–
restricted transformations. This is done in the MONSTER
approach, a multi–configuration method, which diagonal-
izes the Hamiltonian in the space of the VAMPIR solu-
tion and all the corresponding symmetry–projected two–
quasi–particle excitations. In this way, K–mixing is in-
cluded right from the beginning and missing couplings are
avoided. Similar calculations, though on the basis of fixed
intrinsic mean fields and restricted to separable forces,
have been performed by Hara and Sun [16]. The MON-
STER approach, however, is only suited for exited states
whose structure is not too different from that of the un-
derlying HFB vacuum.

4 Numerical implementation and performance

Since time–reversal invariance is not any more imposed
on the HFB transformation there is no a priori two–fold
degeneracy in the system. Thus there is no advantage in
using the canonical representation as it was done in the
earlier versions of the VAMPIR approach. Instead all the
matrix elements are now calculated in terms of the A– and
B–matrices of the HFB transformation (3, 4). Further-
more, since also axial symmetry is not any more required,
the sums run over all the quantum numbers and not only
over subspaces with definite value of the 3–component of
the intrinsic angular momentum. This in fact makes the
numerical implementation simpler than in the previous
approaches which made explicit use of the symmetries
required. On the other hand the number of linear inde-
pendent variables in the variation does increase consider-
ably. E.g., in an sd–shell basis, we have 20 variables in
the REAL VAMPIR, 56 in the COMPLEX VAMPIR and
552 in the unrestricted approach just for the variation of
the HFB–transformation alone. In the unrestricted case
we have furthermore to add the configuration (K–) mix-
ing degrees of freedom. For given total angular momen-
tum I these are 2I extra variables (one drops out because
of normalisation). For unrestricted calculations in larger
basis spaces, the number of variables will easily reach a
few thousands and some care has to be taken in choos-
ing the numerical procedure used for the minimisation.
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We therefore replaced the Quasi–Newton method used in
the older versions of the code (there the inverse Hessian
was updated) by a more modern implementation updating
the Hessian itself. This method, given by Gill and Murray
[17], is equally fast as the old version, however, numeri-
cally more stable.

Number parity is still conserved even for general HFB
vacua of the form (6). Thus they contain either only com-
ponents with even or with odd total nucleon number. Ob-
viously one has to ensure the right number parity in the
starting wave function for the system under consideration.
This is achieved by blocking one orbit if odd A systems
are to be described. In this case the calculation of the ro-
tated overlap–matrix is slightly more involved as for the
even A–case but still straightforward.

Obviously we pay a price for the use of unrestricted
transformations: in the earlier applications two of the
three integrations induced by the angular momentum pro-
jection could be performed analytically due to axial sym-
metry. Hence together with the two integrations induced
by the projection on good nucleon numbers only three–
fold integrations had to be performed. Now also the two
rotations around the 3–axis have to be done numerically
so that the calculation of energy– and overlap–matrices
as well as of the corresponding gradient vectors involves
always five–fold numerical integrations.

Such calculations, at least in larger model spaces,
can hardly be performed on sequential– or even vector–
computers, since the CPU time does increase essentially
with the power of number of integrations. On the other
hand multi–fold integrations are particularly suited for
multi–processor computers. One can distribute the iden-
tical mathematical operations to be performed on each
grid point combination over the different processors avail-
able, collect the results at the end and perform the in-
tegration. Since the calculation of the projected matrix
elements (overlap, energy and corresponding gradients) is
the by far most time consuming part of the program (more
than 99 percent), the code can be parallelized almost en-
tirely.

In practice we have achieved this using the Cray For-
tran 77 package on the Cray T3D computer in Edinburgh.
How nicely this procedure works, can be seen from Fig.
1, where (after subtracting a constant overhead of 10 sec-
onds) the inverse CPU time needed by the unrestricted
GENERAL VAMPIR code is plotted as function of the
number of processors used. We observe a perfectly linear
behaviour which is the optimal performance one can reach
in parallel computing.

5 Results and discussions

The quality of the unrestricted VAMPIR approach which
we shall denote as GENERAL COMPLEX VAMPIR
(GCV) in the following was tested by selected applica-
tions in an 1s0d–shell model space. This allows a direct
comparison with exact SCM diagonalizations as well as
with the results of earlier more restricted VAMPIR and
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Fig. 1. Performance of the parallelized GENERAL COM-
PLEX VAMPIR code on the Edinburgh Cray T3D. Plotted
is the inverse CPU time versus the number of processors used

MONSTER calculations. We chose nuclei out of the mid-
dle of the 1s0d–shell where the dimensions of the shell–
model configuration spaces are considerably larger than
the number of variational variables present in the GCV
approach.

The single particle energies (ε(0d5/2) = −4.15 MeV,
ε(1s1/2) = −3.28 MeV, and ε(0d3/2) = +0.93 MeV) have
been taken from experiment [18]. As effective interaction
the mass-dependent version of the Chung and Wildenthal
force [19] has been used, except for the fact that the ex-
ponent α of the scaling–factor V̂ (A) = V̂ (A = 18)( 18

A )α

has been chosen as 1
3 instead of 0.3.

Figure 2 displays the total binding energies relative to
the 16O core of the yrast spectrum of 24Mg obtained by
5 different approximate methods and compares them to
the exact SCM results presented in the first column from
the right. Starting from the left we first give the results
of REAL VAMPIR (RV) calculations. Odd spins are not
accessible in this approach as discussed in Sect. 3. For the
even spin states the RV reproduces the relative excitation
energies of the SCM spectrum rather well, however, misses
the absolute energy by more than 2.5 MeV. In the next
column come the results of the REAL MONSTER (RM)
which diagonalizes the chosen Hamiltonian in the space
of the RV–vacuum obtained for the 0+ ground state and
all corresponding symmetry–projected two–quasi–particle
excitations. By construction therefore the total energy of
the 0+ ground state remains unchanged while the higher
spin states get some, though small, contributions from the
two–quasi–particle excitations. Furthermore, in this case
the symmetry–restrictions of the RV calculation are over-
come and the odd spin states can be obtained as well.
For them, too, the relative excitation energies of the SCM
spectrum can be well reproduced, though the order of the
4+ and 3+ excitations is reversed.
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Fig. 2. The yrast spectrum of the nucleus 24Mg obtained with
different methods. The various abbreviations are explained in
the text

The third column from the left displays the results
of the COMPLEX VAMPIR (CV) approach. Here odd
spin states can be obtained even from the K=0 vacuum,
however, the figure clearly indicates that those states are
dominated by four– and more–nucleon couplings which
are “missing” in the still time–reversal invariant and ax-
ially symmetric vacuum. Thus their description is rather
bad. For the even spin states the energy differences are of
about the same quality as in the RV calculation, however,
the absolute energy is considerably improved with respect
to the latter approach : Now the SCM ground state en-
ergy is missed by less than 700 KeV. Again the short-
comings for the description of the odd spin states can be
overcome by the corresponding multi–determinant COM-
PLEX MONSTER (CM) approach. Using this method,
both, the relative energies of the even and the odd spin
states can be reproduced equally well as can be seen in
the fourth column from the left which displays the results
of [20].

Second but last we show the results of the (one–
determinant) GCV calculations. Now not only the rela-
tive energies but also the absolute binding energies of both
even and odd spin states can be reproduced within about
100 KeV. This is by no means trivial : e.g., the number of
SCM configurations for the 3+ state is 4968 as compared
to only 558 linear independent variables in the GCV ap-
proach. Note, that the rather complicated SCM expansion
of the wave function is in the GCV approximated by a sin-
gle determinant only. Obviously, the “free” GCV solution
could be correlated by additional configurations via the
FED VAMPIR method [9]. However, the results presented
here clearly demonstrate that there is not much space for
such additional correlations at least in 24Mg.

Within the 1s0d–shell the largest SCM dimensions are
obtained for 28Si. The results for the yrast states of that
nucleus are displayed in Fig. 3. The same methods as in
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case of 24Mg are compared with each other. We observe a
rather similar pattern. Again the GCV results agree well
with the SCM spectrum though here the deviations are
slightly larger (e.g., about 300 KeV for the 3+ state which
has here 15385 SCM configurations). So, even in the mid-
dle of the shell the “free” GCV approach yields an excel-
lent description of the exact solutions.

The same holds for doubly–odd and odd nuclei, too.
As an example we present in Fig. 4 the results for the low-
est yrast states of the doubly–odd nucleus 26Al. Here no
RV results can be given since this method is restricted to
doubly–even nuclei only. The RM calculation was based on
the RV solution for the ground state of the doubly–even
nucleus 28Si. It is seen that also in this case the GCV
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approach reproduces the shell–model spectrum very well.
However, here remaining differences in absolute energy of
about 400 KeV would have to be accounted for by addi-
tional correlations. As an example for an odd nucleus we
display the results for the three lowest states of 27Al. Be-
cause of time–reversal symmetry these states are inacces-
sible by even the CV approach, so that the GCV spectrum
presents the first symmetry–projected one–determinant
description of an odd nucleus. Again the agreement with
the SCM solutions is excellent. The CM results have been
obtained here using only the complete one–quasi–particle
configuration space based on the mean–field which was
obtained with the CV approach for the 0+ ground state
of the neighbouring doubly–even nucleus 28Si. Thus larger
deviations are to be expected for the CM results as in case
of the even A nuclei.

6 Conclusions and outlook

In the present paper we have reported results of the first
symmetry–projected HFB calculations ever done using en-
tirely unrestricted vacua. Comparison with the results of
complete shell–model diagonalizations in an 1s0d–shell ba-
sis has shown that the exact results can be reproduced
almost perfectly though we have used for each state only
a single symmetry–projected determinant, i.e., an essen-
tially “free” theory. This holds even in the middle of
the shell where the shell–model dimensions are largest,
and furthermore, the agreement is of the same quality
for doubly–even, doubly–odd and odd nuclei. Unlike the
shell–model, however, the unrestricted GENERAL COM-
PLEX VAMPIR (GCV) approach is not limited to small
model spaces but can be applied in much larger basis sys-
tems.

Even in single–shell basis systems complete conven-
tional shell–model calculations become almost impossible
above A∼48. So, e.g. in 62Zn already the 0+–dimension
is for a full pf–basis of the order 107. As compared with
truncated shell–model calculations, allowing for up to 2
holes in the f7/2 orbit, the GCV approach yields here an
energy gain of nearly 4 MeV [21]. Full pf-shell calculations,
however, are still possible using the modern Monte–Carlo
methods [22,23]. Here it would be very interesting to com-
pare the results of such calculations with those of the GCV
variational approach.

However, as soon as the basis becomes larger than
a single major shell, we encounter a well known though
rarely discussed problem. Most approaches to the nuclear
many body problem (including the above discussed varia-
tional as well as the Monte–Carlo techniques) expand the
wave functions in terms of Slater or generalized Slater de-
terminants. In this way the Pauli principle is fulfilled by
construction but the Galilean invariance is severely bro-
ken. It is usually argued that this is an 1/A effect and
thus of minor importance at least for systems heavier than
16O. Recent investigations [24,25] show that this state-
ment is not true. Spectroscopic factors, form factors, re-
sponse functions and even energies can be severely affected
by an incorrect treatment of the center of momentum mo-
tion even in nuclei like 40Ca and beyond. We therefore
believe that the restoration of full Galilean invariance, ob-
viously before the variation, is necessary.

This can be achieved again by projection methods
[24]. The corresponding integral operator involves another
three–fold integration to be performed in addition to the
five–fold integration already present in the GCV approach.
Similar difficulties are to be expected, e.g., in Otsuka’s
version of the Monte–Carlo approach [23]. Thus a cor-
rect treatment of Galilean invariance is hardly possible
on present day sequential or vector computers. For par-
allel processing the situation is quite different. We have
demonstrated in the present study that the multi–fold in-
tegrations to be performed in the GCV approach are par-
ticularly suited for parallel data processing : we obtained
a linear increase of the inverse CPU time with the number
of processors available and thus the optimal performance
which can be reached on parallel computers. Since, fur-
thermore, we have already succeeded in developing the
mathematical apparatus needed for the projection of gen-
eral HFB determinants into the center of momentum rest
frame, we are confident that this procedure will become
numerically feasible in a not very distant future.

We are grateful to the experts of the TRACS–project at the
Edinburgh Parallel Computer Centre whose advise was essen-
tial for the successful numerical implementation of the GCV
method.
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